SUSY Q-balls as a dark matter candidate

Mikhail Shaposhnikov

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Outline

- What are Q-balls?
- Supersymmetric Q-balls
- Baryon number violation and Q-balls
- SUSY Q-balls as dark matter candidates
- Cosmological production
- Matter-antimatter conversion
- Experimental signatures
- Astrophysical constraints
- Conclusions

Simplest example: one scalar field with unbroken U(1) global symmetry:

$$L = \partial_{\mu}\phi^*\partial^{\mu}\phi - U(\phi^*\phi)$$

Conserved charge:

$$Q=i\int d^3x\left[\phi^*(\partial_0\phi)-(\partial_0\phi^*)\phi
ight]$$

Question:

What is the minimum energy configuration with the charge Q?

What are Q-balls?

Answers:

- Collection of Q well separated scalar particles, E = mQ
- If the particles with the same charge are attracted to each other: bound state of Q scalar particles $\equiv Q$ -ball, $E = (m - \Delta m)Q$

Mathematics: find a minimum of energy functional

$$E=\int d^3x\left[|\partial_0\phi|^2+|ec{
abla}\phi|^2+U(\phi^*\phi)
ight]$$

keeping the charge

$$Q=i\int d^3x\left[\phi^*(\partial_0\phi)-(\partial_0\phi^*)\phi
ight]$$

fixed.

Solution: a spherically symmetric non-topological soliton

 $\phi(r,t) = e^{i\omega t}\phi(r)$

which exists provided the minimum of

$${U(\phi^*\phi)\over \phi^*\phi}$$

exists at some $\phi = \phi_0 \neq 0$.

What are Q-balls?

Particle physics models and Q-balls

Renormalizable field theory with one scalar field:

$$U(\phi^*\phi)=m^2\phi^*\phi+\lambda(\phi^*\phi)^2$$

$$rac{U(\phi^*\phi)}{\phi^*\phi}=m^2+\lambda\phi^*\phi$$

The only minimum is at $\phi = 0 \rightarrow No Q$ -balls.

Experiment: The only known global symmetries are those associated with baryon number B and lepton number L. But, no scalar fields carrying B or L are known!

Supersymmetric extention of the standard model: MSSM

SUSY: each particle has a "superpartner"

spin	particle	superpartner	spin
$\frac{1}{2}$	quark	squark	0
$\frac{1}{2}$	lepton	slepton	0
0	higgs	higgsino	$\frac{1}{2}$
0	Z	zino	$\frac{1}{2}$

49 (!) scalar fields carrying baryon and lepton numbers \rightarrow many types of Q-ball solutions!

Crucial question : Are they stable?

$$M_Q = (M_s - \Delta M_s)Q$$

Q-balls are stable in the scalar sector (cannot decay into scalar particles) but may (?) decay quickly when fermions are taken into account:

$$M_Q = (M_s - \Delta M_s)Q \gg m_p Q.$$

Possible process:

$$ilde{q} + ilde{q} o q + q$$

SUSY theories with gauge-mediated supersymmetry breaking: effective potential is flat along quite a number of directions in the space of scalar fields

This type of potential leads to existence of stable nontopological solitons, carrying baryon number

Typically, $\Lambda \sim 1-10$ TeV, $\phi_0 \sim 1-10$ TeV.

stable SUSY Q-balls

Minimization with respect to *R* gives:

$$\omega \sim (\pi \sqrt{2}) \Lambda Q^{-1/4}, \ M_Q \sim (4\pi \sqrt{2}/3) \Lambda \; Q^{3/4} \ R_Q \sim (1/\sqrt{2}) \Lambda^{-1} Q^{1/4}$$

If Q is the baryonic charge they are stable for ($\Lambda \sim 1 \text{TeV})$

$$Q>(rac{4\pi\sqrt{2}\Lambda}{3m_p})^4\sim 10^{15}$$

found from $M_Q < m_p Q$.

Solutions to classical equations of motion for flat potential:

$$\phi(r,t) \simeq \phi_0 e^{i\omega t} rac{sin(\omega r)}{\omega r}, ext{ for } r < R_Q, \ \phi(r,t) \simeq 0, ext{ for } r > R_Q$$

SUSY theory is embedded finally into some GUT \rightarrow

Baryon number is not conserved \rightarrow

Q-balls are not stable

Questions:

- Q-ball lifetime
- Modes of decay

Method: add to the action higher-dimensional operators consistent

with SUSY and look at the modified Q-ball properties.

The result depends on the structure of flat direction along which Q-ball

is constructed

For large ϕ the degeneracy of potential is broken by higher order operators

$$V^n(\phi)_{\text{lifting}} pprox \lambda_n M^4 \left(rac{\phi}{M}
ight)^{n-1+m} \left(rac{\phi^*}{M}
ight)^{n-1-m}$$

 $M \sim 10^{16} {
m GeV}$ is the scale of grand unification.

For $Q>Q_c$, (determined from $V^n(\phi)_{ ext{lifting}}\sim\Lambda^4)$

$$Q_c\simeq\lambda_n^{-rac{2}{n-1}}\left(rac{M}{\Lambda}
ight)^{rac{4n-12}{n-1}}$$

properties of Q-balls change. m and n depend on the structure of flat

direction of scalar potential.

Chamroucce, 21 December 2004 - p.13

- m ≠ 0: explicite breaking of the global U(1) symmetry
 responsible for Q-ball existence → strong baryon number
 non-conservation → fast Q-ball decay.
- m = 0: Q-ball charge can grow beyond Q_c , but the dependence of the parameters of the Q-ball on Q is modified:

 $\phi_0\sim arphi_{
m max}, ~~M\sim \mu Q,~~\omega\sim \mu,~~R\sim (\mu Q/\Lambda^4)^{1/3} ~,$

where $\mu^2 \sim V(arphi_{
m max})/arphi_{
m max}^2$

Changing *n* from n = 4 to n = 7 the frequency ω ranges from 10 MeV to 10^{-3} MeV and the vev ϕ_0 from 10^7 to 10^{11} GeV.

- Q-balls formed along QUDE, QLUD, QLUDE directions cannot have baryon charge greater than ~ 10^{17} and are short lived
- Q-balls formed along directions UE, QL, QU, LUE, UDE, QLE, QLD, QLU, QUD LUDE, QLDE, QLUE, starting from Q ~ 10¹⁷ have the following mass charge relation:

$$M\sim\omega_0 Q$$

with $\omega_0 \sim 10 MeV$ ($\Lambda \sim 1$ TeV). They decay by emitting neutrinos, antineutrinos and e^{\pm} pairs with typical energies $E \sim \omega_0$. Lifetime in general \gg universe age. • other Q-balls (directions LD, LDE and some of UD, QUE, LUD) have the similar mass charge relation but with smaller $\omega_0 \sim 10^{-4} - 0.1$ MeV. They decay by emitting neutrinos and antineutrinos and their lifetime is huge compared with the universe age.

Very large Q-balls can become black holes,

$$Q_{
m bh}\simeq 2\cdot 10^{53} \left(rac{TeV}{\Lambda}
ight)^2 \left(rac{MeV}{\omega}
ight) \, .$$

SUSY Q-balls as dark matter candidates

- We need SUSY
- SUSY predicts superpartners (fermions: zino, higgsino, etc)

- We need SUSY
- SUSY predicts superpartners (fermions: zino, higgsino, etc)
- The lightest SUSY particle-neutralino- is stable

- We need SUSY
- SUSY predicts superpartners (fermions: zino, higgsino, etc)
- The lightest SUSY particle-neutralino- is stable
- It is the dark matter candidate

- We need SUSY
- SUSY predicts superpartners (fermions: zino, higgsino, etc)
- The lightest SUSY particle-neutralino- is stable
- It is the dark matter candidate

It is difficult to detect neutralinos as they interact weakly with ordinary matter (WIMP)

SUSY Q-balls as dark matter candidates

SUSY Q-balls as dark matter candidates

Another candidate to dark matter: superheavy SUSY Q-ball The logic:

We need SUSY

- We need SUSY
- SUSY predicts superpartners (scalars: squarks, sleptons)

- We need SUSY
- SUSY predicts superpartners (scalars: squarks, sleptons)
- squarks and sleptons carry conserved global charges and may form stable non-topological solitons

- We need SUSY
- SUSY predicts superpartners (scalars: squarks, sleptons)
- squarks and sleptons carry conserved global charges and may form stable non-topological solitons
- They are dark matter candidates

- We need SUSY
- SUSY predicts superpartners (scalars: squarks, sleptons)
- squarks and sleptons carry conserved global charges and may form stable non-topological solitons
- They are dark matter candidates

It is difficult to detect Q-balls as their concentration is very small (super-

heavy dark matter

Affleck-Dine baryogenesis:

Inflation : Initial energy density \sim $M^4_{_{Pl}} \gg \Lambda^4
ightarrow$ initial value of the scalar field is likely to be large, $\phi \sim M_{Pl} \rightarrow$ at large ϕ baryon number is not conserved and CP is broken \rightarrow Due to the classical evolution the universe acquires baryon number in the form of Affleck-Dinecondensate, $\phi \propto e^{i\omega t}\phi_0$

Uniform configuration with $\phi \propto e^{i\omega t} \phi_0$ – Q-matter. Observation: Q-balls are better than uniform Q-matter!

Charge density in Q-matter: n_Q , total charge: n_QV

Mass of Q-matter: $\Lambda^4 V \gg \Lambda (n_Q V)^{3/4}$

\downarrow

Q-matter is unstable against Q-ball formation.

Cosmological production of Q-balls

Instabilities in AD condensate

Q-ball formation

Kasuya, Kawasaki

Cosmological production of Q-balls

More than 40 Q-balls are formed, and the largest one has the charge with $Q\simeq 5.16 imes 10^{16}$

More than 10 Q-balls are formed, and the largest one has the charge with $Q\simeq 1.74 imes 10^{16}$ How large a Q-ball could be? Charge density at temperature *T*:

 $n_Q \sim \delta T^3$, $\delta \sim 10^{-10}$ is the baryon asymmetry.

Suppose that instability develops at $T = T_i$. Its size must be smaller than horizon at this time \implies

$$Q < \delta T^3 \left(rac{T_i}{T}
ight)^3 \left(rac{M_{Pl}}{T_i^2}
ight)^3 \sim \delta \left(rac{M_{Pl}}{T_i}
ight)^3$$

For $T \sim T_{EW} \sim 100$ GeV $Q < 10^{38}$.

Instability analysis: depends on the potential.

Result: Q-balls as large as $Q \sim 10^{26}$ are possible!

Dark matter and baryon asymmetry - the same source?!

AD condensate \rightarrow Q-ball formation \rightarrow Q-ball evaporation \rightarrow baryon asymmetry \rightarrow an explanation why $\frac{\Omega_b}{\Omega_{DM}} \sim \frac{1}{7}$? Computation:

$$rac{\Omega_b}{\Omega_{DM}}\sim rac{m_p M_{Pl}}{m_s^2 \sqrt{Q}}$$

Dark matter can be baryonic ?!

Scalar field inside Q-ball generates Majorana mass for quarks:

$$m_q^M \sim g_s^2 \phi^2 rac{M_M}{M_G^2}$$

 $(M_G$ -gluino mass) coming from

$$L_{eff} = g_s ar q \lambda^a \phi ilde G^a + M_M ilde G^a ilde G^a$$

Majorana mass inside Q-ball \gg 1 GeV \rightarrow baryons cannot propagate inside and are reflected as antiparticles from the surface of a Q-ball Q-ball converts matter into antimatter with efficiency $\sim 100\%$:

$$n + Q(B) = \bar{n} + Q(B+2)$$

$$\bar{n} + Q(B) = n + Q(B - 2)$$

Analogy - Andreev scattering in superconductors.

Unlimited new source of energy!

In principle, Q-balls can be distinguished from monopoles catalyzing proton decay, strangenets, nuclearites, etc

Assume: all DM in Q-balls with baryon number Q

$$n_Q\sim 3\cdot 10^{-4}Q^{-rac{3}{4}}\left(rac{1\ TeV}{\Lambda}
ight)cm^{-3}$$

Q-ball flux is

$$F\sim 3\cdot 10^{11}Q^{-rac{3}{4}}\left(rac{1\ TeV}{\Lambda}
ight)cm^{-2}yr^{-1}$$

Strong interaction with matter: geometrical cross-section, $\sigma = \pi R_Q^2$ Signature: energy release ~ 100 Gev/cm Experimental limits from Baikal, Macro:

$$Q > 10^{23}$$

Q-balls do not accumulate in Earth and Sun: they are too heavy and go through without stopping:

$$\left(rac{\delta v}{v}
ight)_{Earth} \sim 10^{-7} \ , \quad \left(rac{\delta v}{v}
ight)_{Sun} \sim 10^{-5}$$

But neutron stars and white dwarfs stop Q-balls. For 10^8 years typical neutron star accumulates $\sim 10^{12}$ grams of Q-balls ($10^{-20}M_{NS}$).

Q-balls are trapped by

the neutron stars

Naive estimate of the neutron star conversion rate to Q-ball:

$$\frac{dQ}{dt} \sim 4\pi R_Q^2 n_n$$

 $t \sim rac{(\omega_c \phi_{max}^2)^{2/3}}{n_0} (Q_{bh})^{1/3} \sim 1$ day??!

Q-balls are excluded? (Neutron stars are known to live at least 1 Gyr)

OUANTUM NERNET Teleport round the world

SPECIAL REPORT Your essential guide to the

GENOME SEA MONSTERS Hunting for Moby Squid

KILLERS Do squarks murder stars?

Diffusion and radiation pressure effects change the estimate completely Diffusion:

$$\frac{dQ}{dt} \sim 4\pi R_Q D_n n_n$$

 D_n - neutron diffusion length

$$t\sim rac{\Lambda}{n_n D_n} (N_n)^{rac{1}{4}}\sim 10^{13}$$
 years

Eddington Accretion Limit: Radiation pressure force per nucleon:

$$F_{Edd} = rac{\dot{M}\sigma}{4\pi r^2}.$$

is compensated by the gravity force $F_{Grav} = \frac{GM_Qm_p}{r^2}$. Equilibrium at:

$$t = rac{\sigma}{4\pi G \omega} \ln rac{Q_{bh}}{Q_i} pprox 4 imes 10^{12} ext{years.}$$

Too long to be observed...

- Superheavy SUSY Q-balls, associated with most of flat directions are practically stable
- They can be used to convert easily matter into antimatter
- They can be copiously produced in the early universe
- Baryon asymmetry and dark matter can be related
- Q-balls can play a role of superheavy dark matter
- They have a very specific experimental signature