Spinning Superconducting Semilocal
Strings
Mikhail S. Volkov

LMPT, Tours, FRANCE

P.Forgacs
S.Reuillon



Search of spinning solitons

= Solitons are solutions of non-linear (exact/effective)
field equations describing localized, particle-like
objects — lumps of energy

= Almost all known soliton solution have vanishing
angular momentum, J = 0
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Atic solitons

tationary, spinning generalizations ?



Global solitons DO rotate — in theories with rigid
symmetries there are stationary, spinning solitons

Their energy Is generically infinite.

Local solitons DO NOT rotate — none of the known
gauge field Yang-Mills-Higgs solitons with gauge

group G < SU(2)

admit
spinning generalisations within the manifestly
stationary and axially symmetric sector.

et us try a mixture: local+global
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Semilocal Abelian Higgs Model

1
L= —7FuF" + (D,®) D' — % (PTD —1)2.

Ot .
b = ( . ) . D,® = (9, +iA,)P.

Ow — 0 limit of Standard Model:
U(l)local X SU(2)100a1 — U(l)local X SU(Z)global
Four conserved Noether currents

ja=i{(Dre)t  e—of D'} (1)
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Field equations

V.F¥ = ji,
D,D'"d = —p(®'® 1),

Known solitons /Achucarro, Vachaspati, 2000/

m6>0:4, (qz;)_

- (H)2:1:AM, (?) -

Are there other solutions ?
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Cylindrical symmetry

Action is invariant under the symmetry generated by

0 0 0

Kp=—, Ko=—, Kzg=—.

(1) = g’ (2) = 5, (3) D
Conserved currents ji, , = TJ'A[ ), with

T = —F'FE,, + (D"®)'D,® + (D,®) D' — 6L

v

the energy-momentum tensor.
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Conserved charges

E = 27?/ pTPdp energy
0

P

277/ pTYdp momentum
0
J = 27 / pngp angular momentum
0
In addition, one has four U(1) x SU(2) charges.

Q= 27T/ pJadp
0

A=0.1273
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Symmetry conditions

Under the action of the fields are invariant

Ky Ay = —0u0(m) (),
K(m) b = i(Oz(m) (33) + @?m)Ta)(I),
The symmetry is If 3 (locally) a gauge where

the r.h.s. vanish — nothing depends on ¢, z, . Otherwise,
symmetry IS
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Solving the symmetry conditions

/\(,,) commute = 3 gauge where A, = A,(p),
Ky ® = i(apm) + Omy7s) @,
whose solution
O = [ (p) exp{Zi(am) £ 0m))z™}

™ = (t, z, p). Residual gauge freedom=- one can set

Ay =0, ap) +0: =0,

o) =0y =0, a) — b =0
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Symmetric fields

Ayda” = ( (p) —w)dt —  (p)dz + (W(p) — v)dy

po (S0
g(p)e’t W)

withw, k € R, v € Z, and W, f,g—seven
functions of p. Symmetry Is non-manifest.

Further reduction is imposed by finiteness of energy
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Regularity conditions

C
2 I/ / (s
pf =0 = = —,
( ) pf?
= energy Is divergent unless C,, = 0 = = const.
Same for
E=k —w .
satisfies

pg" + & =2p(f* + g°)¢
= energy is divergent unless £(p) = 0 =

(p) = wY(p), (p) = kY (p).
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Most general ansatz

A det =w(Y —1)dt — kYdz+ (W — )dy

5 f‘e’i(uﬂH— ©)

where w, £ are real constants, the winding number Is
Integer, and Y, W, f, g — four functions of p.

Boundary conditions for 0 « p — oc
0 f(p) — 1,
v —Wi(p) =0,
9(0),Y(0) < g(p), Y (p) — 0.
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After 2* = (t,z,p,p) — 3" = (, Z, v, p), With

t = tcosh(y) — Zsinh(y), 2z = Zcosh(y) — tsinh(y),

and the gauge transformation

A, — A, —0,a(x), & — D

)

~

with o = (wz + kt) sinh(~y), the ansatz restores its form
up to

~

w = cosh(vy)w + sinh(y)k, k = cosh(v)k + sinh(v)w.

= all values (w, k) belonging to the same orbit with
fixed 02 = k* — w?
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L orentz invariants

do not depend separately on but on

0'2:

Example — the reduced Lagrangian

1
_pL:O_2p <§Y/2_I_f2y2_|_92(y_ 1)2)
/12 /2 1 /2 1 2 2 1 2 2
+ p(f"+g )+%W el +;9(W—V)
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Field equations

%(pY’)’ = 2(f*+¢9°)Y —2¢°,
p(%/) = 2f°W 4 2¢°(W —v),
W2
~(of') = AV + =+ A+ g = DY,
1 N/ 2 2 (W _ V)2
— = 10°(Y — 1
p(pg) {o( ) p



20 = 27 /OO pj3dp = 87w /OO pg*(1 —Y)dp,
0 0
superconducting current along the vortex
1= ZW/OOpjédpz 2—0Q,
0
momentum and angular momentum

P

277/ pTdp = — Q,
0

J = 27r/ pTodp= Q.
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ENergy

2 k‘2
E = 27| Iw—l_ 9)

2W

- / dpp (f* + g* — 1)
0

2

T OO@ /I 2 /I .y 2
Lo /0 L{(pf = SW) +(pg' = g(W =)

+ 27T

+ 50V = o+ 2= 1)

2 k2
> 97| |4 w;} 0 forf>1
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Three types of solutions

All (w, k) on the same Lorentz orbit are equivalent.
Three types of orbits:

m o> = (0 Chiral case, contains (w, k) = 0. All known
solutions are of this type.

= 02 < 0 Timelike case — no finite energy solutions.

= 0° > 0 Spacelike case — new spinning strings.
w=0,c°=k?,

OQ=P=J=0
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tz orbits
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P
Yosy = {vaf (a1},
() - {(Wp;”> (P4 — 1)l

Solutions are known for =1
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pf* = fW, g=(C/p)f
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Skyrmions comprise a family labelled by ¢(0).

Forw =k = 0theyarestatic, O =7 =P =J =0,
the energy attains the Bogomol’nyi bound

E =27
For w = k£ # 0 they spin,
=40, P=-kQ, J=v9

the energy
E=2r +|w|Q

If v = 1, then O = .
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Skyrmions comprise a family parameterized by ¢ = ¢(0),

known only for 5 = 1. Can we generalize them for any
as solutions of the minimal system with ¢ = 0?

0 (m) = 2f°W + 2¢°(W —v),

P
Sosy = {vaf (a1},
~(ng)) - {(Wp;” (Pt
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Asymptotic solutions, o = 0

One has for 0 « p — oo

2
1— p°+... W — S(1+...)+ ﬁe—ﬂp(pr...)

p
D ...<—f:1—2—p2(1+...)+%e—mﬂ(1+...)
¢+0(p?) —g=—01+0(p"))

0

qg= free + 1 fixed parameter =
not enough to fulfil matching conditions =
no solutions for arbitrary 5. What to do ?
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Asymptotic solutions, o # 0

q= free + 1 fixed parameter + free
= Just enough to fulfil matching conditions =-

non-linear eigenvalue problem for 2.
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Non-linear eigenvalue problem for o2

(pY") = 2(f*+ ¢))Y —2¢°,

2f*W + 2g°(W — v),

)
D | =/
b‘%
N

|

oY = Y+ (g -1
o) = o' -1+ s (g

Solution exists for any 3, g(0) = q.
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Exist for any ¢(0) and g > 1




Generalizations of 5 = 1 skyrmions for 3 > 1. Carry a
conserved charge O and the superconducting current

7 =2( / )9Q,also carry the momentum and angular
momentum

P=—-FkQ J=v0

Inthe w =0 frame O = P =J = 0, butZ # 0, the
energy In this frame

Fano(B) > E > 27| |+ 00Q

Probably stable — have smaller energy than the ANO
vortices. Probably can be promoted to solutions of
standard model. Probably can be applied in type 11
superconductivity.
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