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Status of the cosmological constant

The reason why Λ was wrongly understood as a free parameter in Einstein’s
equations has an historical origin, known as “Einstein’s bigest blunder”: he used it
for describing the data according to a static cosmological solution (Einstein 1917)
when (later on) a general expansion of the universe was observed (Hubble 1927).
Such an attitude became an authority argument in favour of Λ = 0, until accelera-
tion of the cosmological expansion was established.

The status of the cosmological constant Λ has long been discussed (Souriau 1977;
Felten & Isaacman 1986; Charlton & Turner 1987; Sandage 1988; Carroll, Press,
Turner 1992), while it is clearly established (Souriau 1964) in General Relativity
(GR) as universal constant , as similalrly as the one of Newton constant. It intervenes
at large scale for describing the gravitational field. If Λ �= 0 then the dynamics of
the cosmological expansion can be investigated by rescaling Einstein equations with
adapted units (Souriau & R. Triay 1997).
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Observational status of the cosmological constant

Probably because of some a priori in mind, estimates such as

Λ < 2 10−55 cm−2

from dynamics of galaxies in clusters (Peach 1970) or

−2 10−56 cm−2 ≤ Λ < 4 10−56 cm−2

from the minimum age of the universe and the existence of high redshift ob-
jects (Carroll, Press, Turner 1992), were interpreted (for arguing) in favor of a
vanishing value.

On the other hand, subsequent estimates based on the redshift distance relation
for brightest cluster galaxies (Bigot, Fliche, Triay 1988, Bigot & Triay 1989) and
for quasars (Fliche & Souriau 1979; Fliche, Souriau & Triay 1982; Bigot, Fliche,
Triay 1988; Triay 1989) provided us unambigously with a non zero cosmological
constant

Λ ∼ 3h2 10−56 cm−2, h = H◦/100 kms−1 Mpc−1

Nowadays, it is generally believed that

Λ ∼ 2h2 10−56 cm−2

is required for accounting of observations from SN (J.V. Perlmutter et al 1998,1999;
Schmidt et al. 1998; Riess et al. 1998,2004) and CMB (Sievers et al. 2002, Netterfield
et al. 2002, Spergel et al. 2003, Benoit etal et al. 2003)
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Principle of General Relativity applied to gravity

The gravitational field and the gravitational sources are characterized respec-
tively by the metric tensor gµν on the space-time manifold V4 and by a vanishing
divergence stress-energy tensor Tµν .

The gravitational field equations satisfy the

Principle of general relativity (Souriau 1964)

i.e., they must be invariant with respect to the action of diffeomorphism group of
V4. Their most general form reads in term invariants and can be writen as follows

Tµν = −A0F
(0)
µν + A1F

(1)
µν + A2F

(2)
µν + . . .

where

F (0)
µν = gµν , F (1)

µν = Sµν = Rµν − 1
2
Rgµν

are the invariants of order 0 and 2 respectively. Rµν stands for the Ricci tensor
and R the scalar curvature, F

(n)
µν is a function which reads in term of invariants of

order 2n , and finally the An are coupling constants. The invariants of order ≤ 2
are uniquely defined (i.e. F

(n)
µν with n ≤ 1), but the functions Fn

µν with n ≥ 2 have
to be derived from additional principles or suggested by observations.



6

Dimensional analysis of gravitational field equations

The dimensional analysis of field equations unables us to estimate the relative
contributions of constants An for describing the gravitational field.

According to GR, time can be measured in unit of length

1s = 2.999 792 458 1010 cm

i.e. the speed of the light c = 1a. Let us choose units of mass M and of length L

(only two fundamental units can be chosen, the third one is derived).
The correct dimensional analysis of GR sets the covariant metric tensor to have

the dimension

[gµν ] = L2

and thus one has

[gµν ] = L−2, [Rµν ] = 1, [R] = L−2

Since the specific mass density and the pressure belong to the mixed tensor Tµ
ν one

has

[Tµν ] = ML−1

Therefore, the identification of units of constants

[A0] = ML−3, [A1] = ML−1, . . . (1)

shows that the larger their order n the smaller their effective scale. Namely, the
contribution of A0 dominates at large scale, the one of A1 at smaller scale, and so
on. . .

aThis means that any statement which mentions c varying is meaningless in GR
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Identification of universal constants

In order to identify these constants, we use Newton approximation of field equa-
tions, with Poisson equation

div�g = −4πGρ + Λ

where �g stands for the gravitationnal acceleration field due to sources defined by a
spectific density ρ. The identification gives then

G =
1

8πA1
= 7.4243 × 10−29 cm g−1, Λ =

A0

A1
≈ 2 h2 × 10−56 cm−2

The related acceleration reads

�g =
(
−G

M

r3
+

Λ
3

)
�r

If Λ > 0 then the gravitational force around a mass M is attractive at distance
r < r◦ = 3

√
3MG/Λ but repulsive at r > r◦,

Hence, one understands that the Λ term has the status of universal constant
as Newton gravitational constant G. In other words, “any statement which enables
us to assume Λ = 0 within GR, could be used as well as for Newton constant of
gravitation G”.

Because of their respective dimensions

[G] = LM−1, [Λ] = L−2

the contribution of Λ for describing the gravitational field is expected at much larger
scale than the one of G, the transition scale is of order of 1/

√
Λ.
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Solving Problems of Standard Cosmology

• The Age Problem (FST 1982, Souriau & Triay 1997)
• The Flatness Problem (Triay 1997)

Actually Dicke’s coincidence problem 1970

1 = ΩΛ + Ωk + Ωm + Ωγ

Ωk < −1

• The origin of Inertia (Mach’s Principle)
• Electric neutrality & Antimatter Problems (Fliche, Souriau & Triay 1982)
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Modeling gravitational structures

The space-time is constrained by the presence of gravitational sources as de-
scribed by means of tensor Tµν . Each right hand terms contributes within its effec-
tive scale for describing the geometry. This is the reason why gravitational structures
within scales of order of solar system can be described by limiting the expansion
solely to Einstein tensor Sµν , when the first term is also required in Cosmology. If
Λ �= 0 then one can units so that field equations can be written in a normalized
form (i.e., A0 = A1 = 1) as follows

Tµν = −gµν + Sµν + A2F
(2)
µν + . . . (2)

Such a choice, herein called “gravitational units”, which sets the units of time 1/
√

Λ
and of mass 1/(8πG

√
Λ), is adapted for describing gravitational structures up to

largest scales, and in particular for the dynamics of the cosmological expansion.
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The Cosmological constant Problem

The investigation of the contribution to the gravitational field of the vacuum energy
density due to quantum fluctuations leads to the so called “cosmological constant
problem” (Carroll 2001, Padmanabhan 2003).

Namely, the predicted value from quantum fields theories and the one measured
from observations at cosmological scale differs by 120 orders of magnitude.

Other estimations of this quantum effect from the point of view of the standard
Casimir energy calculation scheme (Zeldovich 1967) provide us with discrepancies
of ∼ 37 orders of magnitude (Cherechnikov 2002).

Such a result has a clear explanation by using gravitational units, since the
Planck constant is equal to

� ∼ 10−120

which shows that such a very small value for the quantum action unit (which has
to be compared to � = 1 when quantum units are used instead) shows clearly that
Einstein equations (i.e. field equations with n ≤ 1) are not adapted for describing
quantum physics (Triay 2002,2004).
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Modeling the cosmological expansion as quantum structure

Let us assume a quantum approach

T vac
µν = ρvac gµν , ρvac = �kmax

with

ρEW
vac ∼ 2 10−4 g cm−3, ρQCD

vac ∼ 1.6 1015 g cm−3, ρPlanck
vac ∼ 2 1089 g cm−3

the dynamics of the cosmological expansion satisfies the field equations

Tmat
µν + T rad

µν + T vac
µν = −gµν + Sµν + A2F

(2)
µν + . . .

Discussion

• the contribution of matter ρmat ∼ 0.3h2 × 1.8783 10−29 g cm−3

• hypotheses on the spatial distribution of sources (void between sources)
• the effective scale is not quantum

Suggestion

• ρvac ∝ F
(2)
µν

• Quantum Gravity
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