ESF COSLAB Network Conference Disorder and Topological Defects, a Helium Primer Grenoble 17.-22.12.2004

INHOMOGENEOUS IMPURITY DISTRIBUTION IN FERMI SUPERFLUIDS

Erkki Thuneberg Department of Physical Sciences, University of Oulu

E.T, S.K. Yip, M. Fogelström, and J.A. Sauls, Phys. Rev. Lett. **80**, 2861 (1998). R. Hänninen and E.T., Phys. Rev. B **67**, 214507 (2002).

http://boojum.hut.fi/research/theory/aerogel.html

Content

Impurities in Fermi superfluids

- quasiclassical theory
- impurity averaging

Application to superfluid ³He in aerogel

- homogeneous distribution of impurities
- a model of inhomogeneous impurity distribution
- discussion

Impurities in metals

Parameters:

- scattering cross section σ
- density of impurities \boldsymbol{n}
- mean free path for quasiparticles

 $\frac{1}{\ell} = n\sigma$

Scattering causes electrical resistance in normal metals

Superconductors (usual case)

- T_c not changed (Anderson theorem)
- Ginzburg-Landau parameter increases

but

- magnetic impurities in usual superconductors, or

- usual impurities in unconventional superconductors (p, d, ... wave pairing)

Quasiclassical scattering theory

parameters:

- Fermi wave length λ_F
- coherence length

$$\xi_0 = \frac{\hbar v_F}{2\pi k_B T_c}$$

- scattering cross section σ
- density of impurities \boldsymbol{n}

- $n\sigma=1/\ell$

Assumption:

$$\lambda_F, \sqrt{\sigma} \ll \xi_0, \ell$$
 (1)

Take leading terms, ignore terms that are smaller by factors λ_F/ξ_0 , etc.

Technical tool: take an average over the locations of the impurities.

However, due to assumptions (1), this implies that all fluctuations in the impurity density are lost.

\Rightarrow

Instead of true discrete impurities there is a continuous scattering medium.

$$\Rightarrow$$

"Homogeneous scattering model" (HSM)

Quasiclassical equations

4x4 matrix Green's function $\hat{g}(\hat{\mathbf{k}}, \mathbf{r}, \epsilon_m)$:

$$[i\epsilon_m \hat{\tau}_3 - \hat{\nu} - \hat{\Delta} - \hat{\rho}, \hat{g}] + i\hbar \mathbf{v}_{\mathsf{F}} \cdot \nabla_{\mathbf{r}} \hat{g} = 0$$
$$\hat{g}(\hat{\mathbf{k}}, \mathbf{r}, \epsilon_m) \hat{g}(\hat{\mathbf{k}}, \mathbf{r}, \epsilon_m) = -\pi^2$$
$$\hat{\rho}(\hat{\mathbf{k}}, \mathbf{r}, \epsilon_m) = n(\mathbf{r}) \hat{t}(\hat{\mathbf{k}}, \hat{\mathbf{k}}, \mathbf{r}, \epsilon_m).$$

Equation for the scattering matrix $\hat{t}(\hat{\mathbf{k}}, \hat{\mathbf{k}}', \epsilon_m)$

$$\widehat{t}(\widehat{\mathbf{k}},\widehat{\mathbf{k}}',\mathbf{r},\epsilon_m) = \widehat{v}(\widehat{\mathbf{k}},\widehat{\mathbf{k}}') + N(\mathbf{0})\langle \widehat{v}(\widehat{\mathbf{k}},\widehat{\mathbf{k}}'')\widehat{g}(\widehat{\mathbf{k}}'',\mathbf{r},\epsilon_m)\widehat{t}(\widehat{\mathbf{k}}'',\widehat{\mathbf{k}}',\mathbf{r},\epsilon_m)\rangle_{\widehat{\mathbf{k}}''}.$$

Energy functional

$$\Omega = \int d^3 r \left[\frac{1}{V_{BCS}} \langle |\Delta(\hat{\mathbf{k}}, \mathbf{r})|^2 \rangle_{\hat{\mathbf{k}}} + \frac{1}{2} N(0) T \sum_{\epsilon_m} \int_0^{\Delta} \frac{d\Delta}{\Delta} \langle \mathsf{Tr}_4[\hat{g}(\hat{\mathbf{k}}, \mathbf{r}, \epsilon_m) \hat{\Delta}(\hat{\mathbf{k}}, \mathbf{r})] \rangle_{\hat{\mathbf{k}}} \right]$$

+ terms arising from Fermi-liquid corrections $\hat{\nu}$.

Need a better theory?

- in high T_c superconductors $\sqrt{\sigma}/\xi_0$ is not negligible. \Rightarrow

Fluctuations of the impurity density are important. (Franz, Kallin, Berlinsky, and Salkola 1997)

- superfluid ³He in aerogel

Impure superfluid ³He

 3 He is a naturally pure substance

Impurity can be introduced by porous aerogel

- strands of SiO_2
- typically 98% empty
- small angle x-ray scattering \Rightarrow homogeneous on a scale above $\approx 100 \text{ nm}$

Compare that to

 $\xi_0 = 16...74$ nm,

depending on pressure.

Experiments:

HSM has qualitative success, but insufficient quantitatively.

Models

Use guasiclassical theory with a location dependent impurity density $n(\mathbf{r})$.

Isotropic inhomogeneous scattering - spherical unit-cell approximation - (quasi)periodic boundary condition

Isotropic inhomogeneous scattering model (IISM)

Order parameter in distorted B phase

Supercurrent

 \mathbf{j}_{S} in cylindrical coordinates ho, ϕ, z .

Transition temperature

Transition temperature

Comparison to experiments (vary pressure)

data made to coincide here by scaling the *x*-axis

Porto et al (1995), Sprague et al (1995), Matsumoto et al (1997)

Temperature dependence of the order parameter

Suppression of

Comparison to experiments

The IISM gives better fit to experiment than HSM.

The optimal radius of the unit cell $R \approx 140$ nm is on the same order of magnitude than the aerogel correlation length ≈ 84 nm.

No perfect fit to experiments

- possible reason: IISM has only one length scale R.

Inhomogeneous order parameter

Inhomogeneity of order parameter $A_{\mu i}(r)$ essential - constraining to constant $A_{\mu i}$ results in HSM

This inhomogeneity is neglected in determining the equilibrium A-B transition line (Baumgardner and Osheroff, 2004)

A-like phase

IISM: suppression of Δ nearly the same as for B phase \Rightarrow no exotic phase can compete with it.

Random variation in aerogel makes A-phase orientation to change randomly $\Rightarrow \langle A_{\mu i}(r) \rangle =$ small Fomin: "A phase is not robust"

However, all physical properties depends on averaged square, e.g.

$$\langle F_{\mathsf{D}} \rangle = g_{\mathsf{D}} \langle A_{ii}^* A_{jj} + A_{ij}^* A_{ji} - \frac{2}{3} A_{\mu i}^* A_{\mu i} \rangle.$$
⁽²⁾

 \Rightarrow All measurable properties A-phase like

Cooling from normal state

Assume aerogel in absence of bulk liquid

The transition always takes place first to the polar phase $A_{\mu i} = \Delta(r) \hat{d}_{\mu} \hat{m}_i$. This state is localized to a favorable region.

At some lower temperature a second component develops $A_{\mu i} = \hat{d}_{\mu} [\Delta_1(r) \hat{m}_i + \Delta_2(r) \hat{n}_i]$. A-phase is favored over planar phase by strong-coupling effects.

This may take place independently on many locations.

These regions grow together with decreasing T and form a disordered A phase.

Only in very exceptional (isotropic) locations B phase is nucleated instead of A.

Conclusions

Quasiclassical theory: inhomogeneous scattering modelled by n(r).

Isotropic inhomogeneous scattering model (IISM):

- the simplest model of inhomogeneous scattering that reduces to homogeneous medium on a large scale

- computationally much heavier than HSM
- ³He in aerogel: IISM clearly better than HSM, but still not perfect
- calculation of other properties? (specific heat, vortex states ...)
- application to other superfluids?

Links: http://boojum.hut.fi/research/theory/aerogel.html