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Impurities in metals

Parameters:
- scattering cross section σ
- density of impurities n
- mean free path for quasiparticles

1

�
= nσ

Scattering causes electrical resistance in
normal metals

Superconductors (usual case)

- Tc not changed (Anderson theorem)
- Ginzburg-Landau parameter increases

but

- magnetic impurities in usual supercon-
ductors, or

- usual impurities in unconventional su-
perconductors (p, d, ... wave pairing)

⇒

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.5

1.0

ξ0/�

Tc

Tc0

s-wave pairing and
nonmagnetic scattering

non-s-wave pairing or
magnetic scattering

(Abrikosov-Gorkov 1961)



Quasiclassical scattering theory

parameters:

- Fermi wave length λF

- coherence length

ξ0 =
�vF

2πkBTc

- scattering cross section σ
- density of impurities n
- nσ = 1/�

Assumption:

λF ,
√

σ � ξ0, � (1)

Take leading terms, ignore terms that
are smaller by factors λF/ξ0, etc.

Technical tool: take an average over
the locations of the impurities.

However, due to assumptions (1), this
implies that all fluctuations in the
impurity density are lost.
⇒
Instead of true discrete impurities there
is a continuous scattering medium.
⇒
”Homogeneous scattering model”
(HSM)
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Quasiclassical equations

4x4 matrix Green’s function ĝ(k̂, r, εm):

[iεmτ̂3 − ν̂ − ∆̂ − ρ̂, ĝ] + i�vF · ∇rĝ = 0

ĝ(k̂, r, εm)ĝ(k̂, r, εm) = −π2

ρ̂(k̂, r, εm) = n(r)t̂(k̂, k̂, r, εm).

Equation for the scattering matrix t̂(k̂, k̂′, εm)

t̂(k̂, k̂′, r, εm) = v̂(k̂, k̂′) + N(0)〈v̂(k̂, k̂′′)ĝ(k̂′′, r, εm)t̂(k̂′′, k̂′, r, εm)〉k̂′′.

Energy functional

Ω =
∫

d3r[
1

VBCS
〈|∆(k̂, r)|2〉k̂ +

1

2
N(0)T

∑
εm

∫ ∆

0

d∆

∆
〈Tr4[ĝ(k̂, r, εm)∆̂(k̂, r)]〉k̂]

+ terms arising from Fermi-liquid corrections ν̂.



Need a better theory?

- in high Tc superconductors
√

σ/ξ0 is not negligible.

⇒
Fluctuations of the impurity density are important.

(Franz, Kallin, Berlinsky, and Salkola 1997)

- superfluid 3He in aerogel



Impure superfluid 3He

3He is a naturally pure substance

Impurity can be introduced by

porous aerogel

- strands of SiO2

- typically 98% empty

- small angle x-ray scattering ⇒
homogeneous on a scale above

≈ 100 nm

Compare that to

ξ0 = 16 . . .74 nm,

depending on pressure.

Experiments:

HSM has qualitative success, but

insufficient quantitatively.



Models

Use quasiclassical theory with a loca-
tion dependent impurity density n(r).

Homogeneous scattering model

Random voids
  - not simple enough to calculate

Periodic voids
  - not simple enough to calculate

trajectory of a 
  quasiparticle

Isotropic inhomogeneous scattering
  - spherical unit-cell approximation
  - (quasi)periodic boundary condition

Isotropic inhomogeneous
scattering model (IISM)

Order parameter in distorted B phase

parameters:
R, radius of the unit cell
n(r), scattering profile
�, average mean free path
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Supercurrent
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Transition temperature
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Transition temperature

Comparison to experiments (vary pressure)

Slab model

data made to coincide here by scaling the x-axis
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Temperature dependence of the order parameter
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Suppression of
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Comparison to experiments

The IISM gives better fit to experiment than HSM.

The optimal radius of the unit cell R ≈ 140 nm is on the same order of

magnitude than the aerogel correlation length ≈ 84 nm.

No perfect fit to experiments

- possible reason: IISM has only one length scale R.



Inhomogeneous order parameter

Inhomogeneity of order parameter Aµi(r) essential
- constraining to constant Aµi results in HSM

This inhomogeneity is neglected in determining the equilibrium A-B
transition line (Baumgardner and Osheroff, 2004)

A-like phase

IISM: suppression of ∆ nearly the same as for B phase
⇒ no exotic phase can compete with it.

Random variation in aerogel makes A-phase orientation to change
randomly ⇒ 〈Aµi(r)〉 = small
Fomin: ”A phase is not robust”

However, all physical properties depends on averaged square, e.g.

〈FD〉 = gD〈A∗
iiAjj + A∗

ijAji − 2
3A∗

µiAµi〉. (2)

⇒ All measurable properties A-phase like



Cooling from normal state

Assume aerogel in absence of bulk liquid

The transition always takes place first to the polar phase Aµi = ∆(r)d̂µm̂i.

This state is localized to a favorable region.

At some lower temperature a second component develops

Aµi = d̂µ[∆1(r)m̂i + ∆2(r)n̂i]. A-phase is favored over planar phase by

strong-coupling effects.

This may take place independently on many locations.

These regions grow together with decreasing T and form a disordered A

phase.

Only in very exceptional (isotropic) locations B phase is nucleated instead

of A.



Conclusions

Quasiclassical theory: inhomogeneous scattering modelled by n(r).

Isotropic inhomogeneous scattering model (IISM):

- the simplest model of inhomogeneous scattering that reduces to

homogeneous medium on a large scale

- computationally much heavier than HSM

- 3He in aerogel: IISM clearly better than HSM, but still not perfect

- calculation of other properties? (specific heat, vortex states ...)

- application to other superfluids?

Links: http://boojum.hut.fi/research/theory/aerogel.html
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